SAS



data xxx;

input   int $   trt  $ no;

datalines;

 mild  R 13

 mode R 0

 sev R 2 

  mild T 13

 mode T 3

 sev T 0

 ;

 run;


 proc freq data = xxx ;

 weight no ;

 tables  trt *int /chisq ;

 run ;



data respire; input treat $ outcome $ count ; 

cards; 

test f 40 

test u 20 

placebo f 16 

placebo u 48; 


proc freq; 

weight count; 

tables treat*outcome/measures chisq; 

run;


sas 카이제곱검정에 대한 이미지 검색결과



 참고파일

Sas_web.pdf



#SAS Code for Confidence Intervals for a Proportion


data veg; 

  input response $ count; datalines; 

       no 25 yes 0 ; 

run ;


proc freq data=veg; 

  weight count; tables response / binomial(ac wilson exact jeffreys) alpha=.05; 

run;


#SAS Code for Chi-Squared, Measures of Association, and Residuals for Data on Education

data table; 

  input degree belief $ count @@; 

  datalines; 1 1 9 1 2 8 1 3 27 1 4 8 1 5 47 1 6 236 2 1 23 2 2 39 2 3 88 2 4 49 2 5 179 2 6 706 3 1 28 3 2 48 3 3 89 3 4 19 3 5 104 3 6 293 ; 

run ;

proc freq order=data; 

 weight count; tables degree*belief / chisq expected measures cmh1; 

run ;


proc genmod order=data; class degree belief; model count = degree belief / dist=poi link=log residuals; 


run;

 

#: SAS Code for Confidence Intervals for 2×2 Table

data example;

 input group $ outcome $ count @@; 

datalines; placebo yes 2 placebo no 18 active yes 7 active no 13 ; 


proc freq order=data; weight count; 

   tables group*outcome / riskdiff(CL=(WALD MN)) measures; 

       * MN = Miettinen and Nurminen inverted score test; 

run; 


#SAS Code for Fisher’s Exact Test and Confidence Intervals for Odds Ratio

data fisher;

 input poured guess count @@; 

datalines; 1 1 3 1 2 1 2 1 1 2 2 3 ; 


proc freq; weight count; 

tables poured*guess / measures riskdiff; exact fisher or / alpha=.05; 


proc logistic descending; 

freq count; 

model guess = poured / clodds=pl; 

run;


# SAS Code for “Exact” Confidence Intervals for 2×2 Table

data example; 

input group $ outcome $ count @@; 

datalines; placebo yes 2 placebo no 18 active yes 7 active no 13 ; 


proc freq order=data; weight count; 

tables group*outcome ; 

exact or riskdiff(CL=(MN)) ; 

run; 


proc freq order=data; weight count; 

tables group*outcome ; 

exact riskdiff(method=score); 

* exact unconditional inverting two one-sided score tests; 

run; 


#SAS Code for Binary GLMs for Snoring Data

data glm; 

input snoring disease total @@; 

datalines; 

0 24 1379 2 35 638 4 21 213 5 30 254 ; 

proc genmod; model disease/total = snoring / dist=bin link=identity; proc genmod; model disease/total = snoring / dist=bin link=logit LRCI; proc genmod; model disease/total = snoring / dist=bin link=probit; run;

'통계 clinical trial > SAS' 카테고리의 다른 글

Data문 DATA set 분리  (0) 2018.11.21
PROC SORT를 이용한 중복자료 삭제  (0) 2018.11.16
proc GLM for BE  (0) 2018.11.08
ODS 특수기능  (0) 2018.11.07
proc report output 출력 순서..  (0) 2018.11.06
블로그 이미지

고향이안드로메다

,